
1© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Unit Testing

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 15

2© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Final Exam

• 17 February 2007
• Location: HS 1
• Time: 10:00-12:30

3© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Outline

This lecture

• Terminology
• Types of errors
• Approaches for

dealing
with errors

• Testing activities
• Unit testing

• Equivalence testing
• Path testing
• Polymorphism testing

Next lecture

• Integration testing
• Testing strategy
• Design patterns &

testing

• System testing
• Function testing
• Structure Testing
• Performance testing
• Acceptance testing
• Installation testing

4© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Terminology

• Reliability: The measure of success with which
the observed behavior of a system confirms to
some specification of its behavior

• Failure: Any deviation of the observed behavior
from the specified behavior

• Erroneous state (error): The system is in a state
such that further processing by the system will
lead to a failure

• Fault: The mechanical or algorithmic cause of an
error (“bug”)

• There are many different types of errors and
different ways how we can deal with them.

5© 2007 Bernd Bruegge Software Engineering WS 2006/2007

What is this?

A failure?

An error?

A fault?

We need to describe specified
and desired behavior first!

Reliability: The measure of success
with which the observed behavior

of a system confirms
 to some specification of its behavior.

6© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Erroneous State (“Error”)

7© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Algorithmic Fault

8© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Mechanical Fault

9© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Examples of Faults and Errors

• Faults in the Interface
specification

• Mismatch between
what the client needs
and what the server
offers

• Mismatch between
requirements and
implementation

• Algorithmic Faults
• Missing initialization
• Incorrect branching

condition
• Missing test for null

• Mechanical Faults
(very hard to find)

• Operating temperature
outside of equipment
specification

• Errors
• Stress or overload

errors
• Capacity or boundary

errors
• Timing errors
• Throughput or

performance errors.

10© 2007 Bernd Bruegge Software Engineering WS 2006/2007

How do we deal with Errors and
Faults?

11© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Modular Redundancy

12© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Declaring the Bug
as a Feature

13© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Patching

14© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Testing

15© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Another View on How to Deal with Faults

• Fault avoidance
• Use methodology to reduce complexity
• Use configuration management to prevent inconsistency
• Apply verification to prevent algorithmic faults
• Use Reviews

• Fault detection
• Testing: Create failures in a planned way
• Debugging: Start with an unplanned failures
• Monitoring: Deliver information about state

• Fault tolerance
• Atomic transactions
• Modular redundancy.

16© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Taxonomy for Fault Handling Techniques
Fault Handling

Testing

Unit
Testing

Integration
Testing

System
Testing

Fault Detection Fault ToleranceFault Avoidance

Atomic
Transactions

Modular
Redundancy

Debugging

Correctness
Debugging

Performance
Debugging

Verification Configuration
Management

ReviewsMethodology

17© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Observations

• It is impossible to completely test any nontrivial
module or system

• Practical limitations: Complete testing is prohibitive in
time and cost

• Theoretical limitations: Halting problem

• “Testing can only show the presence of bugs,
not their absence” (Dijkstra).

18© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Testing takes creativity

To develop an effective test, one must have:
• Detailed understanding of the system

• Application and solution domain knowledge
• Knowledge of the testing techniques
• Skill to apply these techniques

• Testing is done best by independent testers
• We often develop a certain mental attitude that the

program should in a certain way when in fact it does
not

• Programmer often stick to the data set that
makes the program work

• A program often does not work when tried by
somebody else.

behave

19© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Testing Activities

System
Design

DocumentTestedClass/
Subsystem

Tested Class/
Subsystem

Tested Class/Subsystem

Unit
Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Requirements
Analysis

Document

Integration
Test

All tests performed by developer

Functioning
System

Functional
Test

Integrated
Subsystems

Class or
Subsystem

Code

Class or
Subsystem

Code

Class or
Subsystem

Code

20© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Testing Activities continued

Tests by developer

Acceptance
Test

Validated
System

Nonfunctional
Requirements

Client’s
Understanding

of Requirements
User

Environment

Performance
Test

Functioning
System Installation

Test

Accepted
System

System in
Use

Usable
System

User’s
understanding

Tests (?) by user

Tests by client

21© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Quality Assurance encompasses Testing

Usability Testing

Quality Assurance

Testing

Prototype
Testing

Scenario
Testing

Product
Testing

Fault Avoidance Fault Tolerance

Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

Reviews

Walkthrough Inspection

22© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Types of Testing

• Unit Testing
• Individual component (class or subsystem)
• Carried out by developers
• Goal: Confirm that the component or subsystem is

correctly coded and carries out the intended
functionality

• Integration Testing
• Groups of subsystems (collection of subsystems) and

eventually the entire system
• Carried out by developers
• Goal: Test the interface among the subsystems

23© 2007 Bernd Bruegge Software Engineering WS 2006/2007

System Testing

• System Testing
• The entire system
• Carried out by developers
• Goal: Determine if the system meets the requirements

(functional and nonfunctional)

• Acceptance Testing
• Evaluates the system delivered by developers
• Carried out by the client. May involve executing typical

transactions on site on a trial basis
• Goal: Demonstrate that the system meets the

requirements and is ready to use

• Implementation and testing usually go hand in
hand:

• In XP: The tests are implemented first!

24© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Unit Testing

• Static Analysis:
• Manual execution
• Walk-through
• Code inspection

• Dynamic Analysis:
• Black-box testing
• White-box testing
• Data-structure based testing

25© 2007 Bernd Bruegge Software Engineering WS 2006/2007

 Black-box testing

• Focus: I/O behavior
• If for any given input, we can predict the output, then

the component passes the test

• Goal: Reduce number of test cases by
equivalence partitioning:

• Divide input conditions into equivalence classes
• Choose test cases for each equivalence class.

26© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Black-box testing: Test case selection

a) Input is valid across range of values
• Developer selects test cases from 3 equivalence classes:

• Below the range
• Within the range
• Above the range

b) Input is only valid, if it is a member of a
discrete set

• Developer selects test cases from 2 equivalence classes:
• Valid discrete values
• Invalid discrete values

• No rules, only guidelines.

27© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Black box testing: An example

public class MyCalendar {

public int getNumDaysInMonth(int month, int year)
throws InvalidMonthException

{ … }
}

Representation for month:
1: January, 2: February, …., 12: December

Representation for year:
1904, … 1999, 2000,…, 2006, …

How many test cases do we need for the black box testing of
getNumDaysInMonth()?

28© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Black box testing of getNumDaysInMonth
Test case Month Year

31 day months, non-leap year
30 day months, non-leap year
February, non-leap year

31 day months, leap year
30 day months, leap year
February, leap year

Non-positive invalid month
Positive invalid month

Valid
Discrete
values

Invalid
Discrete
values

7
2001
6
2001
2
2001

7
2004
6
2004
2
2004

0
2001
13 2001

How about:
Valid month, invalid year? Do we have all the test cases

for invalid discrete values?

29© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Equivalence testing: Drawbacks

• Inputs are treated independently
⇒Combinations or input values are not well tested

• In our example, we also want to test if leap
years are detected correctly:

Equivalence class Month Year
Leap years divisible by 100 2 1900
Non-leap years divisible by 400 2 2000

30© 2007 Bernd Bruegge Software Engineering WS 2006/2007

White-box testing

• Focus: Thoroughness (Coverage).
• Every type of statement in the component is executed

at least once

• Types of white-box testing
• Algebraic testing
• Loop testing
• Path testing
• Branch testing
• Polymorphism testing.

31© 2007 Bernd Bruegge Software Engineering WS 2006/2007

White-box testing (2)

• Algebraic Testing (Statement Testing)
• Test single statements

• Choice of operators in polynomials, etc

• Loop Testing
• Cause execution of the loop to be skipped completely
• Loop to be executed exactly once
• Loop to be executed more than once

32© 2007 Bernd Bruegge Software Engineering WS 2006/2007

if (b = TRUE) {
 System.out.println(“Yes”);
} else {
 System.out.println(“No”);
}

Test cases:
1) b == True
2) b == False

White-box testing (3)

• Branch Testing (Conditional Testing)
• Make sure that each possible outcome from a condition

is tested at least once

• Path testing
• Make sure all paths in the program are executed

Determining Paths:
Find Decisions Points & Compound Statements

FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else
printf (“No scores found in file\n”);

}

2
3

5

1

4

6

7

8

9

34© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Constructing the Logic Flow Diagram

Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;

}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {
 Mean = SumOfScores / NumberOfScores;
 printf(“ The mean score is %f\n”, Mean);
} else
 printf (“No scores found in file\n”);

 }

2
3

5

1

4

7

8

9

6

35© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Finding the Test Cases
Start

2

3

4 5

6

7

8 9

 Exit

1

b

d e

gf

i j

h
c

k l

a (Covered by any data)

(Data set must

(Data set must contain at least one value)

 be empty)

(Total score > 0.0)(Total score <= 0.0)

(Positive score) (Negative score)

(Reached if either f or
 g is reached)

36© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Test Cases

• Test case 1:
• file with one value (To execute loop exactly once)

• Test case 2:
• empty file (To skip loop body)

• Test case 3:
• file with two values (To execute loop more than once)

 These 3 test cases cover all control flow paths

37© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Polymorphism testing

NetworkConnection

send()

NetworkInterface

open()

WaveLAN UMTS

close()receive()
send()
receive()

Ethernet

setNetworkInterface()

LocationManager

Application

open()
close()
send()
receive()

open()
close()
send()
receive()

open()
close()
send()
receive()

How do we test the method NetworkInterface.send() ?

Implementation of
NetworkInterface.send()
public class NetworkConnection {

//...

private NetworkInterface nif;

void send(byte msg[]) {

queue.concat(msg);

if (nif.isReady()) {

nif.send(queue);

queue.setLength(0);

}

}

}

public class NetworkConnection {

//...

private NetworkInterface nif;

void send(byte msg[]) {

queue.concat(msg);

boolean ready = false;
if (nif instanceof Ethernet) {

Ethernet eNif =
(Ethernet)nif;

ready = eNif.isReady();
} else if (nif instanceof

WaveLAN) {
WaveLAN wNif =

(WaveLAN)nif;
ready = wNif.isReady();

} else if (nif instanceof UMTS)
{

UMTS uNif = (UMTS)nif;
ready = uNif.isReady();

}
if (ready) {

//...

Polymorphism Testing of
NetworkInterface.send()

39© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Polymorphism Testing: Activity Diagram
[nif instanceof Ethernet]

[nif instanceof WaveLAN]

[ready]

[nif instanceof Ethernet]

[nif instanceof WaveLAN]

;

wNif.send()

eNif.send()

uNif.send()

uNif.isReady()

wNif.isReady()

eNif.isReady()

[nif instanceof UMTS]

[nif instanceof UMTS]

40© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Comparison of White & Black-box Testing

• White-box Testing:
• Potentially large number of

paths have to be tested
• White-box tests test what is

done, instead of what
should be done

• Cannot detect missing use
cases

• Black-box Testing:
• Potential combinatorial

explosion of test cases
(valid & invalid data)

• Often not clear whether the
selected test cases uncover
a particular error

• Does not discover
extraneous use cases
("features")

• Both types of testing are
needed

• White-box testing and
black box testing are the
extreme ends of a testing
continuum

• Any choice of test case lies
in between and depends
on the following:

• Number of possible logical
paths

• Nature of input data
• Amount of computation
• Complexity of algorithms

and data structures.

41© 2007 Bernd Bruegge Software Engineering WS 2006/2007

The 4 Testing Steps

1. Select what has to be tested
• Analysis: Completeness of

requirements
• Design: Cohesion
• Implementation: Source

code

2. Decide how the testing is
done

• Review or code inspection
• Proofs (Design by Contract)
• Black-box, white box,
• Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
• A test case is a set of test

data or situations that will
be used to exercise the unit
(class, subsystem, system)
being tested or about the
attribute being measured

4. Create the test oracle
• An oracle contains the

predicted results for a set of
test cases

• The test oracle has to be
written down before the
actual testing takes place

42© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Guidance for Test Case Selection
• Use analysis knowledge

about functional
requirements (black-box
testing):

• Use cases
• Expected input data
• Invalid input data

• Use design knowledge
about system structure,
algorithms, data structures
(white-box testing):

• Control structures
• Test branches, loops,

...
• Data structures

• Test records fields,
arrays, ...

• Use implementation
knowledge about
algorithms and
datastructures:

• Force a division by zero
• If the upper bound of an

array is 10, then use 11 as
index.

43© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Unit Testing Heuristics

1. Create unit tests when
object design is completed

• Black-box test: Test the
functional model

• White-box test: Test the
dynamic model

• Data-structure test: Test
the object model

2. Develop the test cases
• Goal: Find minimal num-

ber of test cases to cover
all paths

3. Cross-check the test cases
to eliminate duplicates

• Don't waste your time!

4. Desk check your source code
• Sometimes reduces testing

time
5. Create a test harness

• Test drivers and test stubs
are needed for integration
testing

6. Describe the test oracle
• Often the result of the first

successfully executed test
7. Execute the test cases

• Re-execute test whenever
a change is made
(“regression testing”)

8. Compare the results of the
test with the test oracle

• Automate this if possible.

44© 2007 Bernd Bruegge Software Engineering WS 2006/2007

Next Lecture

• Junit test framework
• Integration testing
• System testing

